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Grosch & Salwen (1978) discuss the continuous-spectrum contribution in both 
temporal and spatial stability problems that are governed by the linear Orr- 
Sommerfeld equation. Their computed temporal continuum eigenfunctions for the 
Blasius boundary layer and for a laminar jet profile show surprising differences. This 
note provides an improved physical understanding of the results through a simple 
model, and shows that these differences are more apparent than real. 

1. The Grosch-Salwen results 
As part of their instructive examination of the continuous spectrum of the 

Orr-Sommerfeld equation, Grosch & Salwen (1978, hereinafter denoted as I) give 
results for temporally damped continuum modes associated with (a) the Blasius 
boundary-layer profile and ( b )  the jet profile U(y) = 1 - tanh* y. For ease of reference, 
some of these results are briefly described. 

A single ‘continuum mode ’ has a far-field structure, as y + 03 outside the shear- 
flow region, of (cf. I ,  equation (67)) 

~ = exp [ia(x- ky -ct)] + Bexp [ia(x+ ky -ct)] + CePy exp [ia(x-ct)]. (1) 

Here, k is an arbitrary real constant, a is the streamwise wavenumber, a k  a 
transverse wavenumber and R is the Reynolds number. The complex phase velocity 
c of such continuous-spectrum modes is 

c = U,-i(l+k2)a/R (2) 

where U ,  denotes the free-stream velocity (U ,  = 1 for Blasius flow and 0 for the jet). 
The coefficient of the first exponential term is here normalized to unity and B, C are 
complex constants which must be determined by solving the homogeneous boundary- 
value problem posed by the Orr-Sommerfeld equation and the rigid-wall boundary 
conditions. 

The first exponential in (1) may be thought of as representing an ‘ incoming ’ wave 
with wavenumber vector (a, -ka)  making an angle -8 with the x-axis, where 

8 = tan-’k. (3) 

The B-term is then an associated ‘outgoing’ wave and the C-term a ‘trapped’ or 
evanescent mode that decays as y + 03. However, there is no energy or momentum 
flux associated with the incoming and outgoing waves : they are passively convected 
by the free stream U,,  while decaying exponentially by viscous dissipation. 

Computational results of I show magnitudes and phases of B and C a t  specific 
chosen values of a and of R as the angle 8 is allowed to vary from 0 to 90”: that is, 
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FIGURE 1. The magnitudes and phases of the complex amplitudes B and C for the temporal 
continuum modes, from Grosch & Salwen (1978) : (a) for the Blasius boundary layer a t  a = 0.179, 
R = 580; ( b )  for the  two-dimensional laminar jet a t  a = 1 and R = 50. 

as k varies from 0 to infinity. Figures 2 and 3 of I are here reproduced in figure 1 (a, b) : 
the curves of figure 1 (a) are for Blasius flow at H = 580 and a = 0.179: while those 
of figure 1 (b) are for the jet profile with antisymmetric modes a t  R = 50 and a = 1.0 
(it is stated in I that results for symmetric modes are virtually indistinguishable from 
these). 

As remarked in my monograph (Craik 1985, p. 54), these results are puzzling. In 
both cases, IBI = 1 and C = 0 at 8 = 0; but, as 8 increases, IBI gradually decreases 
towards zero in case (a) while it rapidly increases in case ( b )  to a maximum of 4850. 
Though ICl increases in both figures as 6’ increases, the maximum value of ICl is only 
3.7 in ( a )  but 2300 in ( b ) .  These differences, and the curiously rapid phase variations 
a t  larger values of 8, have received no satisfactory explanation. Grosch & Salwen’s 
own assertion (I, p. 48) that the difference in amplitudes ‘was to be expected in view 
of the very low critical Reynolds number for a jet.. . as compared with.. . the Blasius 
boundary layer ’ is unjustified. 

2. A simple model flow 
Consider the piecewise-linear profile 

‘1 u= 1 (y > h), 

U =  y / h  (0 < y < h ) J  
(4) 
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that is crudely representative of a boundary-layer flow. If we restrict attention 
meantime to  inviscid cases (R = a), the appropriate forms for the disturbance in the 
two regions are 

exp [ia(x - ky - t)] + B exp [;a( x + ky - t)] + C ePay exp {ia(x - t )] (y > h) 
(0 < Y c h), Dsinh (ay)exp{ia(x-t)] $=( 

( 5 )  

+ Ce-ah. (6) D sinh (ah) = e-iaRh + B e i a k h  

the latter of which satisfies the inviscid boundary condition a t  the wall. To match $ 
at y = h, we need 

Also, continuity of pressure across the interface yields the condition 

and a/at + Ua/ax = 0 in the inviscid limit. Accordingly, since U' is zero above and 
non-zero below the interface, we must have 

D = 0. (7)  

1. (8) 
In  this inviscid limit, B remains arbitrary, but C is known once B is. I n  order to 
determine B and C uniquely, a viscous boundary condition must additionally be met. 

We shall not attempt to  solve the full viscous problem here: rather, a heuristic 
approach is used which leads to results that are surprisingly successful. Given that 
the inviscid solution yields no disturbance in 0 < y c h and so satisfies the viscous 
no-slip condition a t  y = 0, we merely suppose that the full viscous solution is likewise 
zero, or virtually zero, in this region and we match this with the inviscid solution by 
applying the additional boundary condition that a$/ay = 0 at the interface y = h. 
This procedure implicitly assumes that any viscous contribution to the flow 
disturbance a t  y = h, arising from the wall region, is negligible: for large R ,  this is 
likely to be so. Support for this hypothesis is given by figure 3 of I, which shows that 
there is virtually no disturbance below about y = 4. The imposition of this new 
boundary condition yields 

which combines with (8) to  give 

Hence, there can be no disturbance in the region 0 c y < h and, from (6),  
c = - eah (e-iakh +B eiakh 

(9) - ik e-iakh + ikB eiakh - C e-ah = 0 

I n  terms of modulus and phase, these are, on using (3), 

IBI = 1,  phB = ~ - 2 0 - 2 a h t a n 8 ,  
(C( = 2edsin8, phC = -;xc8-ahtan8, 

(11)  

which may be compared with the precise results of I shown in figure l ( a )  once a 
suitable value is assigned to h, which measures the boundary-layer thickness. 

In appropriate dimensionless units, the Blasius momentum thickness 6* is 1.72 and 
the ' boundary-layer thickness ' is 5.04 according to I (p. 42). It turns out that  a near 
'best fit ' is obtained on choosing h to  lie about midway between these values : the 
value h = 3.44 = 26* is here chosen for illustration and is consistent with figure 3 of 
I. Results (11) are plotted in figure 2 (a,  b )  for this h and for a = 0.179 as in figure 1 (a). 

It is evident that, despite the crude model used, many features of the precise 
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 FIGURE.^. Approximate estimates (1  1 )  of (a) magnitudes and (b) phases of the complex amplitudes 

B and C at a = 0.179 with h = 3.44. 

results shown in figure 1 (a) are successfully captured. The greatest shortcoming is in 
[El, which remains equal to unity for all 8 rather than gradually decreasing from 
unity. That agreement is least good for the largest values of 8 is what one would 
expect : both the viscous damping and the viscous shear stress across the interface are 
greatest for such modes. The growth of ICI is quite well modelled, but not its decay 
back to zero a t  large 8, which is presumably a viscous effect. The increasingly rapid 
phase variation of both B and Cis well represented. The left-hand end points are 180" 
and 90" for ph (B)  and ph(C) according to the model; 180" and 99" according to 1. The 
crossing point where ph (B)  = ph (C) is a t  -360" for all choices of h, according to ( l l ) ,  
and the corresponding value of 8 is just under 80" when h = 3.44. These estimates 
agree remarkably well with figure 1 (a). 

3. The jet profile 
Grosch & Salwen's jet profile may be similarly modelled. If the profile (4) is 

extended into y < 0 by reflection in the x-axis, and if a new reference frame travelling 
in the x-direction with speed 1 is adopted, then the resultant flow resembles a 
symmetric jet travelling from right to left. Now, inviscid disturbances symmetric 
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FIGURE 3. Grosch & Salwen's results for the jet profile at 01 = 1 and R = 50, rescaled according to 
the transformation (12). 

about the line y = 0 arc dynamically equivalent to those just studied for the model 
boundary layer ; furthermore, Grosch & Salwen found that symmetric and 
antisymmetric modcs gavc nearly identical results. However, to  take into account 
the reversed flow direction, it is necessary to make the transformations 

x +  -x, v+$*, 

where the asterisk denotes complcx conjugatc. That is to say, i t  is the coefficient of 
exp [ia(x+ ky)] that  must be normalized to  unity in order to remain consistent with 
( T i ) .  Accordingly, the coefficients of the terms in exp [ia(x- ky)] and exp [ - ay + iax] 
are respcctivelv redefined as 

,. 1 - c *  B = -  C = -  
B* ' R* ' 

where B and C are as in I .  
It is immediately seen that Grosch & Salwen's normalization for the jet, which 

instead took the coefficient of exp[ia(x-ky)] as unity, will not yield results 
resembling those for the boundary layer. For this, the rescaling (12) is required. This 
accounts for the major qualitative differences between figures 1 (a )  and 1 ( b ) .  The 
rcscaling may be done, rather approximately, from enlargements of figure 1 ( b )  : more 
detailed plots would require access to  the original numerical data. 

Figure 3 shows, roughly, these rescaled data, and it certainly more closely 
resembles figure 1 (a) .  decreases uniformly from 1 to  0 as 0 increases from 0 to 90", 
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while 161 rises from 0 at  6' = 0 to a maximum of around 15 near 35", and then 
decreases to zero again. 

In order to compare these data with the model, values must be assigned to a and 
h in (11) .  For the data of figure 1 (b) ,  a = 1.0 and the Reynolds number is R = 50. The 
previous choice of h = 3.44 suggests 

161 = 62.4sin 8, 

which is rather larger than the computed results and, as before, shows no falling off 
to zero at  larger 8. The lower value h = 2.8 gives rather better agreement for ICI in 
the range 20" < 0 < 30°, but an h-value larger than this is better for 0" < 8 < 20". 

The rescaled computations give ph 8 = 180" and ph 6 ( = ph B - ph C- 360") = 
- 135" at  8 = 0, whereas the model gives ph B = 180" and ph = -90". (A much 
smaller disagreement in ph C a t  8 = 0 was noted earlier for the boundary layer). The 
crossing point where ph B = ph 6 is a t  -360" for the model and occurs a t  around 
8 = 54" when h = 2.8. The actual crossing point is a t  a value of 8 closer to 65", with 
ph B = ph 6 at around -400". 

Although there is rough agreement between the model and the now-rescaled 
computations for the jet, this agreement is far less good than for the boundary layer. 
This is certainly due to the different Reynolds numbers, 580 for the Blasius flow and 
just 50 for the jet. 

4. Discussion 
The initial reason for undertaking this study was the surprising qualitative 

difference between the computed results of I for the Blasius boundary layer and for 
the jet. The model problem immediately suggested that the explanation lay in an 
inconsistent normalization : that is to say, the differences are largely apparent rather 
than real and more compatible results are achieved by a simple resealing. 

An improved asymptotic model could doubtless be developed to include viscous 
terms more systematically: see, for example, Drazin & Reid (1981). But for the 
present purpose of shedding an interpretative light on the computational results of 
I, this is unnecessary. The present rather crude model suffices to show that the 
wavelike and evanescent components of a continuous-spectrum disturbance are 
related in such a way as to give virtually no disturbance within the shear-layer zone. A 
remarkably low level of disturbance in the shear layer is confirmed for special cases 
described in I. 

There remains the question of why the disturbance level is so low in the shear-layer 
region for these continuous-spectrum modes. The main explanation seems to be that 
the associated pressure perturbation is very small (zero in the inviscid limit) because 
c, = U,. Within the free stream, it is only viscous stresses that gradually reduce the 
disturbance amplitude while the disturbance is convected along with the free-stream 
speed. In  contrast, within the shear layer, convective processes rapidly distort any 
initial disturbance, producing small vertical scales by tilting of fluid lines in a manner 
previously described by many, from Kelvin (1887) onwards. 

As all inviscid two-dimensional disturbances are vorticity-preserving, the intensity 
of velocity fluctuations must decay as the vertical scale of sheared disturbances 
decreases. Also, viscosity will preferentially damp such small-scaled disturbances. In  
the absence of imposed pressure fluctuations, it is therefore natural that persistent 
disturbances within the shear layer are weak ; for both inviscid shearing and viscous 
dissipation act to eliminate them. This process is exemplified in recent and ongoing 
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work by Criminale & Drazin (1990) and W. 0. Criminalc, F. 1. P. Smith & B. Long 
(in preparation), who discuss the inviscid temporal evolution of more general 
localized disturbances in various model piecewise-linear shear flows. 

This work was undertaken during a brief visit to the University of Washington, 
supported by the USAF Window on Science Program. Discussions with Professor 
W. 0. Criminale are gratefully acknowledged. 
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